Skip to main content
Log in

Comparison Between Isothermal and Non-Isothermal Fatigue Behavior in a Cast Aluminum-Silicon-Magnesium Alloy

  • Published:
Strength of Materials Aims and scope

In the present study, the out-of-phase thermomechanical fatigue (OP-TMF) behavior of a cast aluminum-silicon-magnesium alloy, the A356.0 alloy which has been widely used in diesel engine cylinder heads, is compared to room-temperature and high-temperature low cycle fatigue (RT-, HT-LCF) behaviors. For this purpose, strain/temperature-controlled isothermal and non-isothermal fatigue tests were performed based on realistic loading conditions in cylinder heads. Fatigue tests results showed that the plastic strain increased during cycles under constant mechanical strain amplitude, while the specimen failed. Under LCF loadings, the cyclic hardening occurred at low temperatures for the A356.0 alloy and the cyclic softening occurred at high temperatures, as it was also observed in TMF tests. The radial and longitudinal temperature gradients during TMF tests were almost 2 and 3°C, respectively. Comparing stress-strain hysteresis loops, tensile stresses at minimum temperatures under TMF loadings were more than tensile stresses at LCF cases, due to the out-of-phase loading condition in TMF tests. In this state, maximum temperatures occurred within compressive regimes and minimum temperatures occurred at tensile loads. In general, TMF lifetimes were less than LCF ones due to severe conditions and the temperature deviation in TMF tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Z. Yi, P. D. Lee, T. C. Lindley, and T. Fukui, “Statistical modeling of microstructure and defect population effects on the fatigue performance of cast A356-T6 automotive components,” Mater. Sci. Eng. A, 432, 59–68 (2006).

    Article  Google Scholar 

  2. A. Moridi, M. Azadi, and G. H. Farrahi, “Coating thickness and roughness effect on stress distribution of A356.0 under thermo-mechanical loadings,” Proc. Eng., 10, 1372–1377 (2011).

    Article  Google Scholar 

  3. A. Moridi, M. Azadi, and G. H. Farrahi, “Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects,” Surf. Coat. Technol., 243, 91–99 (2012).

    Article  Google Scholar 

  4. D. L. McDowell, K. Gall, M. F. Horstemeyer, and J. Fan, “Microstructure-based fatigue modeling of cast A356-T6 alloy,” Eng. Fract. Mech., 70, 49–80 (2003).

    Article  Google Scholar 

  5. B. Atzori, G. Meneghetti, and L. Susmel, “Fatigue behavior of AA356-T6 cast aluminum alloy weakened by cracks and notches,” Eng. Fract. Mech., 71, 759–768 (2004).

    Article  Google Scholar 

  6. X. Zhu, A. Shyam, J. W. Jones, et al., “Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles,” Int. J. Fatigue, 28, 1566–1571 (2006).

    Article  Google Scholar 

  7. Y. X. Gan and R. A. Overfelt, “Fatigue property of semisolid A357 aluminum alloy under different heat treatment conditions,” J. Mater. Sci., 41, 7537–7544 (2006).

    Article  Google Scholar 

  8. J. Z. Yi, Y. X. Gao, P. D. Lee, and T. C. Lindley, “Microstructure-cased fatigue life prediction for cast A356-T6 aluminum-silicon alloys,” Metall. Mater. Trans. B, 37, 301–311 (2006).

    Article  Google Scholar 

  9. D. L. McDowell, “Simulation-based strategies for microstructure-sensitive fatigue modeling,” Mater. Sci. Eng. A, 468-470, 4–14 (2007).

    Article  Google Scholar 

  10. H. R. Ammara, A. M. Samuela, and F. H. Samuel, “Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum–silicon casting alloys,” Int. J. Fatigue, 30, 1024–1035 (2008).

    Article  Google Scholar 

  11. M. A. Bayoumi, M. I. Negma, and A. M. El-Gohry, “Microstructure and mechanical properties of extruded Al-Si alloy (A356) in the semi-solid state,” Mater. Des., 30, 4469–4477 (2009).

    Article  Google Scholar 

  12. J. J. I. Mattos, A. Y. Uehara, M. Sato, and I. Ferreira, “Fatigue properties and micro-mechanism of fracture of an AlSiMg0.6 cast alloy used in diesel engine cylinder head,” Proc. Eng., 2, 759–765 (2010).

    Article  Google Scholar 

  13. P. K. Rohatgi, S. Alaraj, R. B. Thakkar, and A. Daoud, “Variation in fatigue properties of cast A359-SiC composites under total strain controlled conditions: effects of porosity and inclusions,” Compos. Part A, 38, 1829–1841 (2007).

    Article  Google Scholar 

  14. A. R. Emami, S. Begum, D. L. Chen, et al., “Cyclic deformation behavior of a cast aluminum alloy,” Mater. Sci. Eng. A, 516, 31–41 (2009).

    Article  Google Scholar 

  15. S. Mousheng and R. Maowu, “Microstructures and properties of low cycle fatigue of electrolytic A356 alloys,” Mater. Charact., 62, 367–372 (2011).

    Article  Google Scholar 

  16. T. Takahashi, Y. Sugimura, and K. Sasaki, “Thermal plastic-elastic analysis in consideration of metallurgical microstructure,” J. Manuf. Sci. Eng., 126, 25–32 (2004).

    Article  Google Scholar 

  17. T. J. Smith, H. J. Maier, H. Sehitoglu, et al., “Modeling high-temperature stress-strain behavior of cast aluminum alloys,” Metall. Mater. Trans. A, 30, 133–146 (1999).

    Article  Google Scholar 

  18. H. Sehitoglu, X. Qing, T. Smith, et al., “Stress-strain response of a cast 319-T6 aluminum under thermo-mechanical loading,” Metall. Mater. Trans. A, 31, 139–151 (2000).

    Article  Google Scholar 

  19. T. Beck, K. H. Lang, and D. Löhe, “Thermal-mechanical fatigue behavior of cast aluminum alloys for cylinder heads reinforced with 15 vol.% discontinuous Al2O3 (Saffil) fibers,” Mater. Sci. Eng. A, 319-321, 662–666 (2001).

    Article  Google Scholar 

  20. J. Luft, T. Beck, and D. Löhe, “Lifetime and damage behavior of a cast aluminum alloy under TMF and superimposed TMF/HCF loading,” in: Proc. of the 11th Int. Conf. on Fracture (March 20–25, 2005, Turin), Politecnico di Torino, Turin, Italy (2005), Vol. 4, pp. 2664–2669.

  21. T. Beck, D. Löhe, J. Luft, and I. Henne, “Damage mechanisms of cast Al-Si-Mg alloys under superimposed thermal-mechanical fatigue and high-cycle fatigue loading,” Mater. Sci. Eng. A, 468-470, 184–192 (2007).

    Article  Google Scholar 

  22. T. Beck, I. Henne, and D. Löhe, “Lifetime of cast AlSi6Cu4 under superimposed thermal-mechanical fatigue and high-cycle fatigue loading,” Mater. Sci. Eng. A, 483-484, 382–386 (2008).

    Article  Google Scholar 

  23. J. J. Thomas, L. Verger, A. Bignonnet, and S. M. Borret, “Thermo-mechanical design in the automotive industry,” SAE Int., Paper No. 2002-01-0659 (2002).

  24. J. J. Thomas, L. Verger, A. Bignonnet, and E. Charkaluk, “Thermo-mechanical design in the automotive industry,” Fatigue Fract. Eng. Mater. Struct., 27, 887–895 (2004).

    Article  Google Scholar 

  25. W. W. Bose-Filho, E. R. de Freitas, V. F. da Silva, et al., “Al-Si cast alloys under isothermal and thermo-mechanical fatigue conditions,” Int. J. Fatigue, 29, 1846–1854 (2007).

    Article  Google Scholar 

  26. M. Riedler, C. Czettl, R. Minichmayr, et al., “Thermo-mechanical fatigue lifetime assessment with damage-parameters, energy-criteria and cyclic-J-integral concepts,” in: Proc. of the 16th Eur. Conf. on Fracture (July 3–7, 2006), Alexandroupolis, Greece (2006).

  27. M. Riedler, H. Leitner, B. Prillhofer, et al., “Lifetime simulation of thermo-mechanically loaded components,” Meccanica, 42, 47–59 (2007).

    Article  Google Scholar 

  28. T. Takahashi and K. Sasaki, “Low cycle thermal fatigue of aluminum alloy cylinder head in consideration of changing metrology microstructure,” Proc. Eng., 2, 767–776 (2010).

    Article  Google Scholar 

  29. M. B. Grieb, H. J. Christ, and B. Plege, “Thermo-mechanical fatigue of cast aluminum alloys for cylinder head applications – experimental characterization and life prediction,” Proc. Eng., 2, 1767–1776 (2010).

    Article  Google Scholar 

  30. M. Azadi, A. Mafi, M. Roozban, and F. Moghaddam, “Failure analysis of a crack gasoline engine cylinder head,” J. Fail. Anal. Prev., 12, No. 3, 286–294 (2012).

    Article  Google Scholar 

  31. M. Azadi, M. M. Shirazabad, “Heat treatment effect on thermo-mechanical fatigue and low cycle fatigue behaviors of A356.0 aluminum alloy,” Mater. Des., 45, 279–285 (2013).

    Article  Google Scholar 

  32. M. Azadi, “Effects of strain rate and mean strain on cyclic behavior of aluminum alloys under isothermal and thermo-mechanical fatigue loadings,” Int. J. Fatigue, 47, 148–153 (2013).

    Article  Google Scholar 

  33. M. Azadi, G. H. Farrahi, G. Winter, and W. Eichlseder, “The effect of various parameters on out-of-phase thermo-mechanical fatigue lifetime of A356.0 cast aluminum alloy,” Int. J. Eng. Trans. C: Aspects, 26, No. 12, 1461–1470 (2013).

    Google Scholar 

  34. G. H. Farrahi, M. Azadi, G. Winter, and W. Eichlseder, “A new energy-based isothermal and thermomechanical fatigue lifetime prediction model for aluminum-silicon-magnesium alloy,” Fatigue Fract. Eng. Mater. Struct., 36, No. 12, 1323–1335 (2013).

    Article  Google Scholar 

  35. G. H. Farrahi, M. Ghodrati, and M. Azadi, “Finite element analysis of thermal and mechanical stresses in diesel engine cylinder head using two-layer elastic-visco-plastic model,” J. Eng. Res., 28, 51–60 (2012).

    Google Scholar 

  36. G. H. Farrahi, A. Shamloo, M. Felfeli, and M. Azadi, “Numerical simulations of cyclic behaviors in light alloys under isothermal and thermo-mechanical fatigue loadings,” Mater. Des., 56, 245–253 (2014).

    Article  Google Scholar 

  37. S. Tabibian, E. Charkaluk, A. Constantinescu, et al., “TMF criteria for lost foam casting aluminum alloys,” Fatigue Fract. Eng. Mater. Struct., 36, 349–360 (2013).

    Article  Google Scholar 

  38. S. Tabibian, E. Charkaluk, A. Constantinescu, et al., “TMF-LCF life assessment of a lost foam casting A319 aluminum alloy,” Int. J. Fatigue, 53, 75–81 (2013).

    Article  Google Scholar 

  39. E. Charkaluk, A. Constantinescu, F. Szmytka, and S. Tabibian, “Probability density functions: from porosities to fatigue lifetime,” Int. J. Fatigue, 63, 127–136 (2014).

    Article  Google Scholar 

  40. A. F. Liu, Mechanics and Mechanisms of Fracture: An Introduction, ASM International (2005).

  41. S. S. Manson and G. R. Halford, Fatigue and Durability of Structural Materials, ASM International (2006).

  42. M. Azadi, G. H. Farrahi, G. Winter, and W. Eichlseder, “Thermo-mechanical behaviors of light alloys in comparison to high temperature isothermal behaviors,” Mater. High Temp., 31, No. 1, 12–17 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Irankhodro Powertrain Company (IPCO) in Iran and University of Leoben in Austria, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Azadi.

Additional information

Translated from Problemy Prochnosti, No. 6, pp. 71 – 83, November – December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadi, M., Winter, G., Farrahi, G.H. et al. Comparison Between Isothermal and Non-Isothermal Fatigue Behavior in a Cast Aluminum-Silicon-Magnesium Alloy. Strength Mater 47, 840–848 (2015). https://doi.org/10.1007/s11223-015-9721-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-015-9721-4

Keywords

Navigation